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Reducible Di¤usions with Time-Varying Transformations
with Application to Short-Term Interest Rates

Abstract

Reducible di¤usions (RDs) are nonlinear transformations of analytically solvable Basic
Di¤usions (BDs). Therefore, they are constructed to be analytically tractable and �exible
di¤usion processes. Existing literature on RDs has mostly focused on time-homogeneous
transformations, which to a signi�cant extent fail to explore the full potential of RDs from
both theoretical and practical point of views. In this paper, we propose �exible and econom-
ically justi�able time-variations to the transformations of RDs. Concentrating on the Con-
stant Elasticity Variance (CEV) RDs, we consider nonlinear dynamics for our time-varying
transformations with both deterministic and stochastic designs. Such time-variations can
greatly enhance the �exibility of RDs while maintain su¢ cient tractability of the resulting
models. Our approach also enjoys the bene�ts of classical inferential techniques as much as
the advocated time-varying nonlinear dynamics. Our application to UK and US short-term
interest rates suggests that from an empirical point of view time-varying transformations are
highly relevant and statistically signi�cant.

JEL Classi�cation: C13, C32, G12
Keywords: Stochastic Di¤erential Equation; Reducible Di¤usion; Constant Elasticity Variance;

Time-Varying Transformation; Maximum Likelihood Estimation; Short-Term Interest Rate.
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1. Introduction

Since the seminal work of Merton (1973), continuous-time di¤usion models have proved
to be extremely useful in modelling �nancial and economic dynamics. They have been
frequently applied to research in consumption, savings and investment problems, contingent
claim pricing, asset return dynamics and so on. In particular, probably more models have
been put forward to explain the behavior of short-term interest rates (short-rates) than for
any other issue in �nance (cf. Chan et al. 1992).
The basic dynamics for a univariate continuous-time di¤usion fYt; t � 0g is described by

the following Stochastic Di¤erential Equation (SDE), also known as the Ito�s di¤usion:

dYt = �Y (Yt) dt+ �Y (Yt) dWt (1)

where �Y (y) and �
2
Y (y) are the instantaneous drift and di¤usion functions respectively, and

fWt; t � 0g is a standard Brownian motion. Parametric di¤usions, which form the majority
in the literature, assume that �Y and �

2
Y are known functions up to an unknown parameter

vector �, i.e. �Y (y) = �Y (y; �) and �
2
Y (y) = �

2
Y (y; �). Well known examples of parametric

di¤usions in �nance include Merton (1973), Brennan and Schwartz (1979), Vasicek (1977),
Cox (1975), Dothan (1978), Cox et al. (1980, 1985), Courtadon (1982), Constantinides and
Ingersoll (1984), Constantinides (1992), Du¢ e and Kan (1996), Aït-Sahalia (1996b), Conley
et al. (1997), Ahn and Gao (1999) (AG), Bu et al. (2011) and so on. Nonparametric and
semiparametric approaches which deviate from the full parametric assumptions have also
been proposed in the literature for their functional �exibility. Notable examples include
Aït-Sahalia (1996a), Stanton (1997), Jiang and Knight (1997), Kristensen (2010), and most
recently Bu et al. (2014), etc.
From an econometric point of view, parametric di¤usions often provide a more intuitive

and convenient way to specify the dynamics of the state variable. In the meantime, it is also
convenient to apply classical inferential techniques such as Maximum Likelihood (ML) and
Method of Moments as long as the likelihood function or certain moment functions can be
evaluated e¤ectively. In this regard, inference for nonparametric or semiparametric di¤usions
can be signi�cantly more complicated and ine¢ cient (cf. Kristensen 2010). Thus, from a
practical point of view, parametric di¤usions are much more abundant and widely used than
nonparametric or semiparametric di¤usions in empirical applications.
Consequently, a great deal of e¤ort has been spent searching for e¢ cient ways to estimate

parametric di¤usions. ML is typically the method of choice for its proclaimed e¢ ciency
gain. Nevertheless, di¤usion models are speci�ed in continuous time, but empirical data
are always sampled at discrete-time intervals. Little can be said about the implications
of the dynamics in equation (1) for longer time intervals. In �nance, Black and Scholes
(1973), Vasicek (1977), Cox et al. (1985), Ahn and Gao (1999) are the few rare cases
where the discrete-time transition Probability Density Function (PDF) is known in closed
form. However, substantial nonlinearity beyond the assumptions of these cases has been
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documented in the literature. In the context of short-rate modelling, Aït-Sahalia (1996b) for
example concluded that the majority of existing parametric di¤usion models were rejected
by his data. This then became the motivation behind his well known Aït-Sahalia (1996b)
general parametric speci�cation1. Meanwhile, in a fully nonparametric setting, Stanton
(1997) also observed strong nonlinearity in di¤usion models for the short-rate series. The
di¢ culty of almost all nonlinear di¤usions are two folded. On one hand, they normally have
no closed-form transition PDFs. Hence, considerable energy has been employed in developing
various density approximation schemes. However, a price has to be paid for approximation
errors and computational burden (cf. Durham and Gallant 2002). On the other hand, some
parameters of highly nonlinear models can sometimes be hard to identify from the data (cf.
Elerian et al. 2001). Therefore, the problem of �exible modelling and e¢ cient estimation of
nonlinear continuous-time di¤usions remains to be an important issue in practice.
In view of these di¢ culties, Bu et al. (2011) proposed a novel approach for model-

ing di¤usions using Reducible SDEs. Reducible Di¤usions (RDs) are de�ned by Kloeden
and Platen (1992) as monotone transformations of analytically tractable Basic Di¤usions
(BDs) that have closed-form solutions. Since RDs are usually constructed by nonlinear
transformations, they are potentially more �exible to capture complex dynamics of stochas-
tic processes but at the same time possess desirable analytical tractability inherited from
tractable BDs. Bu et al. (2011) considered two classes of RDs. The �rst class are di¤usions
transformed from the Ornstein-Uhlenbeck (OU) process (cf. Vasicek 1977) and the second
are transformations of the square-root (CIR) process (cf. Cox et al. 1985). Since the OU
and the CIR processes have renowned analytical tractability, both OU-reducible di¤usions
(OU-RDs) and CIR-reducible di¤usions (CIR-RDs) have similar tractability. In the context
of short-rate modelling, they investigated RDs with Constant Elasticity Variance (CEV),
i.e. �2Y (y) = �

2
0y
2�, which they named as OU-CEV and CIR-CEV RDs respectively. They

showed that OU-CEV and CIR-CEV RDs are power � functions of the OU and the CIR
processes respectively and nest many known parametric models that have exact closed-form
transition PDFs.
Modelling with nonlinear RDs has a number of advantages. Firstly, since RDs are trans-

formations of BDs, additional (often substantial) �exibility can be achieved by specifying
suitable nonlinear transformations. Secondly, the most important property of RDs is that
their transition PDFs can be expressed in closed form via a transformation of the closed-form
transition PDFs of BDs. Thus, the likelihood function for discretely observed samples can
be evaluated and then optimized e¢ ciently and standard likelihood-based inferential tech-
niques can be used conveniently. Thirdly, the conditional Cumulative Distribution Functions
(CDFs) of RDs, also known as the cumulative transition distributions, are also in closed form.
This property makes CDF-based or quantile-based analyses very convenient. Such examples

1The Aït-Sahalia (1996b) speci�cation assumes that �Y (y) = ��1y
�1 + �0 + �1y + �2y

2 and �2Y (y) =
�0 + �1y + �2y

�3 .
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include Value-at-Risk analysis (Jorion 2006), pricing options (Black and Scholes 1973), condi-
tional copula modelling (Patton 2006a,b and 2009), evaluating predictive densities (Diebold
et al. 1998), etc. Finally, the monotonicity of the transformations of RDs implies that crucial
time series properties of discretely observed RDs such as stationarity, ergodicity and mixing
are trivially implied from their BDs. See Doukhan (1994) and Forman and Sørensen (2014)
for more detailed discussions.
While RDs potentially have many important advantages, the speci�cations suggested by

Bu et al. (2011) are relatively restrictive compared to the vast literature on nonlinear sto-
chastic modelling. It is quite unlikely that their time-homogeneous structure can be su¢ cient
in describing varied and various empirical dynamics except for only a few very special circum-
stances. Therefore, useful generalizations of this valuable framework and feasible extensions
of existing speci�cations are extremely important from both theoretical and practical point
of views.
The main contribution of this paper is to propose a number of �exible and easy-to-

implement extensions to the speci�cation of RDs and examine their empirical performance.
Our objective is to generate su¢ ciently �exible transition densities on the basis of time-
homogeneous RDs while maintain su¢ cient tractability so that classic inferential techniques
such as ML estimation can be easily implemented. The concept of conditional time-variation
in �nancial modelling �nd its root in the pioneering work of Engle (1982) Autoregressive
Conditional Heteroskedasticity (ARCH) speci�cation for conditional variances. This insight
was then generalized by Hansen (1994) in his general Autoregressive Conditional Density
(ACD) framework. Hansen�s suggestion is to select a distribution which depends upon a low-
dimensional parameter vector, and then allow this parameter vector to vary as a function
of the conditional variables. While Hansen�s approach assumes that the conditioning set
is perfectly adaptive (i.e. observable in the �ltration of the process), there is a popular
view that the dynamics of economic variables may depend on di¤erent states of the world
or regimes. This is often referred to as state-dependent dynamic behavior. Depending on
whether or not the state of the world at any given point in time is known with certainty
in advance, the regime process can be either deterministic or stochastic. The latter case is
particularly appealing, since it e¤ectively creates a two factor stochastic process. See Chang
et al. (2013) for the latest development in regime-switching stochastic processes.
Although in theory time-variations can be imposed on all elements of the parameter vec-

tor of the baseline model, in practice this is not always feasible. On one hand, imposing
time variation on too many parameters tends to make reduce the tractability of the model.
On the other hand, it reduces the interpretability and economic justi�cation of the econo-
metric model. Thus, in this paper we only allow the transformation parameter to be time-
dependent. In other words, we e¤ectively restrict our attention to RDs with time-varying
transformations. In fact, one potential interpretation of RDs is that the BDs represent the
fundamental risk factor and the empirically observed processes are transformed measures of
this risk process. In this sense, by allowing the transformations to be time-dependent in our
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RDs, this interpretation may be further enhanced and enriched.
Since the philosophy behind our extensions is applicable to all parametric RDs, our

exposition will focus on the CIR-CEV RD only due to its parsimony. Another reason of
this choice is that the underlying BD (i.e. CIR) has non-Gaussian transition PDF, which
to some extent re�ects the general need for deviation from the classic Gaussian framework.
Moreover, the domain of the CIR-CEV RD can be more conveniently de�ned on the positive
real line than the OU-CEV speci�cation. This property is particularly appealing for �nancial
modelling since the support of many �nancial variables (e.g. nominal interests) must be
positive.
As we will see in Section 3, the transformation function of the CIR-CEV RD depends on

a single parameter �. We therefore propose a total of �ve distinct time-variation schemes
to allow � to be time-varying by introducing dynamics of �t to the model. In Model 1, we
specify �t as a deterministic function of the �rst lag of the state variable, i.e. Yt�� where
� is the �xed time interval. In Model 2 to 5, we introduce a regime switching mechanism.
Speci�cally, Model 2 is a Self-Exited Threshold (SET) regime switching process where the
threshold variable is taken as Yt��. In order to allow regimes-switching to be a continuous
process, Model 3 is speci�ed as Logistic Smooth Transition (LST) process. Note that for
Model 1 to 3, the time dependence of �t are deterministic. To overcome this limitation,
Model 4 and 5 allow the transition of states to follow a two state Markov chain. Model 4
assumes that the transition probability between states are independent of the history of Yt
and hence completely exogenous, whereas Model 5 allows potential nonlinear endogeneity in
the transition probabilities. Our benchmark CIR-CEV model is named as Model 0.
As an illustration, we apply our time-varying RD models to UK and US short-rates data.

ML was chosen to be our inferential method. For both rates, overwhelming evidence of
time-variations in the transformation function was found. Our results suggest that while the
naive time-invariant CIR-CEV RD is insu¢ cient in capturing complex dynamics of the data,
the proposed time-varying transformation models appear to be very e¤ective in picking up
additional variability in the dynamics of the data. In particular, evidence of endogenous
regime switching was found in our data, which is consistent with the �ndings of Chang et
al. (2013).
The remainder of the paper is organized as follows. In Section 2, we brie�y review the

RD framework. Section 3 outlines the details of our baseline model and reviews some of its
properties. In Section 4, we present in detail �ve distinct but representative time-varying
transformation schemes. An empirical study based on weekly UK and US short-rates is
presented in Section 5. Section 6 concludes.
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2. Parametric Reducible Di¤usions

Bu et al. (2011) proposed to model stochastic processes in �nance by parametric RDs. They
assume that the dynamics of the state variable Yt is described by

dYt = �Y (Yt; �) dt+ �Y (Yt; �) dWt (2)

and crucially (2) belongs to the reducible class de�ned by Kloeden and Platen (1992). Specif-
ically, the time-homogeneous RD Yt in (2) is de�ned as a strictly monotone time-independent
transformation of an analytically solvable parametric BD Xt, that is

Yt = V (Xt; �)

where Xt is driven by
dXt = �X (Xt; !) dt+ �X (Xt; !) dWt (3)

which depends on parameter vector !. As such, V (x; �) is the transformation function
satisfying @V (x; �) /@x 6= 0 for all x and then � is the transformation parameter vector.
Note that the two standard Brownian motions in (2) and (3) are indeed the same Brownian
motion, since V (x; �) is deterministic and Wt in (3) is the only source of uncertainty. Also,
we will usually have � = ! [ � provided that Xt is suitably normalized.
Ito�s Lemma determines that

�Y (y; �) = �X (U (y) ; !)V
0 (U (y) ; �) +

1

2
�2X (U (y) ; !)V

00 (U (y) ; �) (4)

�Y (y; �) = �X (U (y) ; !)V
0 (U (y) ; �) (5)

where U (y) = V �1 (y) (which may be called the reduction function) is the unique inverse
function of V (x), and V 0 (x) and V 00 (x) are the �rst and second derivatives of V (x) respec-
tively.
The most important task in modelling parametric RDs is the speci�cation of �Y (y; �)

and �2Y (y; �) in (2). In this framework, the choice of (3) is typically restricted within the
class of parametric di¤usions that have closed-form transition PDFs. Hence, �X (x; !) and
�X (x; !) are often easy to determine. Bu et al. (2011) noted that in theory for a given
BD Xt, the knowledge of the functional form of any one of V (x; �), �Y (y; �) or �

2
Y (y; �)

can lead to unique solutions of the other two functions. This can be easily veri�ed by Ito�s
Lemma. Thus, there are three di¤erent ways of specifying Yt. However, in practice they
are not equally feasible. Directly specifying V (x; �) may not be straightforward mainly
because there is generally a lack of guidance for making such a parametric choice. Starting
with a known function �Y (y; �) is also infeasible, since one has to solve a 2nd-order Ordinary
Di¤erential Equation (ODE) to get V (x; �) and �2Y (y; �). Analytical solutions do not usually
exist except for very special cases. Bu et al. (2011) argue that the most analytically tractable
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and economically justi�able approach is to start with a desired di¤usion function �2Y (y; �). In
this case, one only needs to solve a 1st-order ODE which involves at most a one-dimensional
numerical integration. From the economic perspective, the drift term is more related to
the long-run behavior of the state variable, whereas the di¤usion term is more important
in �nancial applications such as volatility estimation and option pricing which rely mostly
on the short-run dynamics of the stochastic process. Moreover, since the drift function is
signi�cantly more di¢ cult to estimate than the di¤usion term from discrete samples, the
preference on the shape of the drift or even the existence of nonlinearity for certain types of
data is still debatable (see Choi 2009 for more discussion).
In practice, it is often more convenient to work with the reduction function U (y). Starting

from any given �2Y (y; �), U (y) is simply the solution to the following 1st-order ODE

@U (y)

@y
=
�X (U (y) ; !)

�Y (y; �)
(6)

Solving (6) is comparatively easy and in many cases analytical solutions exist. Once U (y)
is identi�ed, the Jacobian of the transformation is in fact given by the right-hand side of
(6). De�ne � as the time interval between neighboring observations and let fX (xtjxt��;!)
and fY (ytjyt��;�) be the transition PDFs of Xt and Yt, respectively. It follows from the
distribution transformation that

fY (ytjyt��;�) = jU 0 (yt; �)j fX (U (yt; �) jU (yt��; �) ;!)

where U 0 (y) = @U (y) =@y. Let FX (xtjxt��;!) and FY (ytjyt��;�) be the corresponding
conditional CDFs, we will further have

FY (ytjyt��;�) = FX (U (yt; �) jU (yt��; �) ;!)

for @V (x; �) /@x > 0 or

FY (ytjyt��;�) = 1� FX (U (yt; �) jU (yt��; �) ;!)

for @V (x; �) /@x < 0. Under the assumption that Xt is strictly stationary, so will be Yt.
Hence, the above relationships hold for their marginal distributions too.

3. CIR-Reducible CEV Di¤usion

The CEV di¤usion was introduced by Chan et al. (1992) who considered a linear drift term
and claimed that it was the best �tting model in their study. The CEV speci�cation was
further studied by Aït-Sahalia (1996b) who promoted the use of a nonlinear drift function
to provide a better mean reversion e¤ect. The same type of speci�cation was also estimated
by Conley et al. (1997) and Gallant and Tauchen (1998). Choi (2009) recently studied a
Markov switching CEV di¤usion with a nonlinear drift.
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3.1. Transformation Function and SDE

The CEV di¤usion function is given by �2Y (y; �) = �
2
0y
2� where � 2 (0; 1)[(1;1). Following

the discussion above, for a desired di¤usion term and a given BD, the transformation function
can be uniquely determined from (6). Bu et al. (2011) suggested that one convenient choice
of BD is the square-root (CIR) process which can be written as

dXt = (�2 + �1Xt) dt+ �X
1=2
t dWt (7)

where �1 < 0, �2 > 0 and � > 0. Using the CIR process as the BD has at least three
advantages. Firstly, the CIR process has well known closed-form transition PDF which
follows a non-central �2 distribution with fractional degrees of freedom. Secondly, when
�2Y (y; �) = �20y

2�, the ODE in (6) can be solved analytically and the solution U (y) is a
simple power function. See eq. (8) below. Thirdly, unlike the OU process which has domain
on (�1;+1), the domain of the CIR process can be rigorously restricted to (0;+1), which
ensures that the required power transformation is strictly monotone and that the domain of
Yt is also on (0;+1) as required by many �nancial variables.
After suitably normalizing the scale of Xt by setting �0 = �, it follows that the CIR-

reducible CEV di¤usion has the following transformation (reduction) function

x = U (y; �) = (1 /4)
�
y1�� /(1� �)

�2
(8)

Since U 0 (y) = y1�2�= (2� 2�), the above transformation is strictly monotone on (0;+1) for
any given � 2 (0; 1) [ (1;1). The SDE of the CIR-CEV process is then obtained as

dYt =

��
2�2 (1� �) +

1

2
�2 (2� � 1)

�
Y 2��1t +

�1Yt
(2� 2�)

�
dt+ �Y �t dWt (9)

Thus, the parameter vector of the CIR-CEV RD is � = (�1; �2; �2; �) in which � is the sole
transformation parameter.
It is worth mentioning that the drift and di¤usion terms of (9) are both nonlinear. In

particular, in addition to having a CEV di¤usion term, the drift term also exhibits a much
stronger pull at high levels of the state variable than the linear drift. Both properties are
consistent with empirical �ndings about the two functions reported in Aït-Sahalia (1996a,b),
Conley et al. (1997), Stanton (1997) and many others. Moreover, the SDE in (9) encompasses
the AG model with � = 1:5 and obviously the CIR model itself with � = 0:5. Clearly, the
CIR-CEV process is a more general setup which not only provides the nonlinearity in both
terms but also allows for extra degrees of freedom in the data-driven choice of �.

3.2. Statistical Properties

Bu et al. (2011) studied the CIR-CEV process in signi�cant details. In this section, we brie�y
review some of its most important statistical properties. First of all, the following proposition
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regulates the stationarity, boundary behavior, and temporal dependence properties of the
CIR-CEV process.

Proposition 3.1. Let fYt; t � 0g be a CIR-CEV process de�ned in (9). The necessary and
su¢ cient conditions for mean reversion and the unattainability of the boundaries, i.e. 0 and
1, in �nite expected time are: (i) �1 < 0 and 4�2=�2 > (2� � 1) = (� � 1) if � 2 (1;1);
and (ii) �1 < 0 and 4�2=�2 > 1= (1� �) if � 2 (0; 1). Under the same conditions, the
discretely observed random sequence fYi�; i = 1; :::; ng is strictly stationary and �-mixing
(hence ergodic) satisfying k�� (k)! 0 as k ! +1 for some �xed � > 1.

The conditions in (i) and (ii) are valid for arbitrary values of � 2 (0; 1)[(1;1). Thus, they
are more general than the conditions given by Cox et al. (1985) for the CIR model and Ahn
and Gao (1999) for the AG model, which are both special cases of (9) with � = 0:5 and 1:5
respectively. Under either (i) or (ii), the CIR-CEV process is strictly positive, mean reverting
and stationary. The �-mixing property ensures that the classical asymptotic theory holds for
the ML inference based discretely observed random samples. The proof of this proposition
follows straightforwardly from the regularity conditions set out in Aït-Sahalia (1996b). See
Bu et al. (2011) for more details.
Secondly, the next proposition summarizes the distributional properties of discretely

observed random sequence of the CIR-CEV process.

Proposition 3.2. Under condition (i) or (ii), the transition PDF of the CIR-CEV process
is unique and can be expressed in closed form as

fY (ytjyt��;�) =
1

2

y1�2�t

j1� �jce
�u�v

�v
u

�q=2
Iq

h
2 (uv)1=2

i
(10)

where c = 2�1
��
�2
�
e�1� � 1

��
, u =

�
ce�1� /4

� �
y1��t�� /(1� �)

�2
, v = (c /4)

�
y1��t /(1� �)

�2
,

q = 2�2 /�
2 � 1 and Iq (�) is the modi�ed Bessel function of the �rst kind of order q. The

corresponding closed-form conditional CDF is given by

FY (ytjyt��;�) =
�

D (2cxt; 2q + 2; 2u) for � 2 (0; 1)
1�D (2cxt; 2q + 2; 2u) for � 2 (1;1) (11)

where xt is given in (8) and D (�; 2q + 2; 2u) is the non-central �2 distribution with 2q + 2
degrees of freedom and non-centrality parameter 2u. Meanwhile, the marginal distribution
of the CIR-CEV process exists and is given by

� (y;�) =
1

2

y1�2�

j1� �jg
�
x;
2�2
�2
;�2�1

�2

�
(12)
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where x is given in (8) and g (�; 2�2=�2;�2�1=�2) is the PDF of the Gamma distribution
with shape parameter 2�2=�2 and scale parameter �2�1=�2. The corresponding closed-form
marginal CDF is given by

�Y (y;�) =

�
G
�
x; 2�2

�2
;�2�1

�2

�
for � 2 (0; 1)

1�G
�
x; 2�2

�2
;�2�1

�2

�
for � 2 (1;1) (13)

where G (�; 2�2=�2;�2�1=�2) is the Gamma CDF.
The closed-form transition PDF in (10) allows the users to implement exact ML inference

without any computational burden. This is in contrast to the majority of parametric di¤u-
sions in the literature (cf. Durham and Gallant 2002). Moreover, the closed-form conditional
CDF in (11) is a convenient tool for various statistical and �nancial applications which rely
essentially on conditional quantiles (cf. Jorion 2006, Patton 2009, Diebold et al. 1998).
Generally speaking, all parametric RDs have at least these advantages by their construction.
Finally, the explicit close-form expressions the conditional and unconditional moment

functions of discretely observed random sequence of the CIR-CEV process are provided in
the next proposition.

Proposition 3.3. Under condition (i) or (ii), the conditional moment functions of the CIR-
CEV process are given by

E (ymt jyt��;�)

= [2 j1� �j]
m
1�� c�

m
2(1��) e�u

�
�
q + m

2(1��) + 1
�

� (1 + q)
1F1

�
q +

m

2 (1� �) + 1; 1 + q; u
�
(14)

for m > 0, where 1F1 (�; �; �) is the con�uent hypergeometric function2 de�ned as

1F1 (a; b; y) =
1X
j=0

(a)j y
j

(b)j j!
=

� (b)

� (b� a) � (a)

Z 1

0

eyzza�1 (1� z)b�a�1 dz

with �(�) being the Gamma function. The corresponding unconditional moment functions
are given by

E [ym;�] = [2 j1� �j]
m
1��

�
�2�1
�2

�� m
2(1��) �

�
2�2
�2
+ m

2(1��)

�
�
�
2�2
�2

� (15)

These explicit moment functions are potentially very useful for implementing moment-
based estimations and goodness-of-�t tests. In particular, m in (14) and (15) is allowed to be
any positive real numbers. Thus, (14) and (15) in fact permit the evaluation of the fractional
moments of the CIR-CEV process. A sketch of the proofs of (10) to (15) can be found in Bu
et al. (2011).

2Abadir (1999) provided a detailed account of the hypergeometric functions and their applications in
economics. Also, see Abadir and Rockinger (2003) and Bu and Hadri (2007) for applications in �nance.
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4. Time-Varying Transformations

The RD framework of Bu et al. (2011) was developed under the assumption that time-
invariant transformations are imposed on time-homogeneous BDs to form time-homogeneous
RDs. Although this modelling strategy is original, the maintained assumption of time-
homogeneity may prove to be restrictive from the practical point of view3. In their empirical
application of OU-CEV and CIR-CEV models, they found evidence of time-variation in their
transformations. There are two ways to make RDs (or more generally transformation models)
more �exible. One way is to use more �exible underlying processes. However, in the context
of di¤usions, the choices of models with closed-form solutions are quite limited, which is in
fact the motivation behind RD modelling in the �rst place. Therefore, a more feasible and
practical solution is to introduce suitable time-variation dynamics to the transformations.
Focusing on the baseline CIR-CEV model, we can see that the transformation depends

on a single transformation parameter �. Thus, a natural strategy is to consider various
feasible and practical nonlinear time-varying mechanisms for describing the evolution of �
over time. We consider our approach feasible and practical in terms of both econometric
tractability and empirical �exibility. That is, we aim to create models that can account for
empirical dynamics as �exibly as possible, but at the same time we prefer to enable standard
inferential methods such the ML to be implemented without too much di¢ culties following
the introduction of additional nonlinear features.
Generally speaking, time-varying parameter models can be broadly divided into two

classes. The �rst class assume that the value of the varying parameter at time t is non-
stochastically determined by values of variables observed up to time t. In contrast, the other
class assume that the time-varying parameter values cannot be observed but are determined
by a second unobservable stochastic process. This implies that one can never be certain
about the value of the time-varying parameter at any particular point in time, but can only
assign probabilities to the occurrence of di¤erent values. In this paper, we consider a total of
�ve widely accepted time-varying speci�cations representing both classes of time dependence
in order to re�ect a variety of economically and statistically justi�able situations.

4.1. Autoregressive Conditional Transformation (Model 1)

The ARCH speci�cation of Engle (1982) was one of the earliest innovations in �nance for
considering conditional time dependence. This concept of autoregressive conditioning was
then generalized by Hansen (1994) in modelling conditional densities. The suggestion is to
model conditional densities (instead of just the mean and the variance) with a small number
of parameters and then model these parameters as functions of the conditioning information.
In the current context, to account for potential time-variation in transformation para-

meter �, we assume that �t follows the following Autoregressive Conditional Density (ACD)

3See Choi (2013) for some empirical evidence of time-inhomogeneity in di¤usion modelling.

12



type dynamics

�t = e� ! + pX
i=1

�iY
i
t��

!
(16)

where the link function e� (z) � (1 + e�z) is the reciprocal of the logistic function to restrict
�t on the domain of (1;1) at all times. We can also let the link function to be the logistic
function � (z) � (1 + e�z)�1 to keep �t on (0; 1).
As can be seen from (16), we restrict our forcing variable at time t to be the observation at

time t��, i.e. Yt��. This choice has the advantage of maintaining the �rst-order Markovian
property of the resulting model, which is one of the fundamental assumptions of di¤usion
modelling. In addition, to account for the possibility of nonlinear dependence on Yt��, we
consider a polynomial function of Yt�� and expect that the nonlinear dependence of �t on
Y it��, if any, can be picked up by the signi�cance of coe¢ cient �i. This is analogous to the
reasoning behind the RESET test (cf. Ramsey 1969). Moreover, our polynomial design and
the subsequent ML estimation is also analogous to the sieve estimator in semiparametric
statistics (cf. Ai and Chen 2003). Thus, to some extent Model 1 has some semiparametric
interpretation. In practice, the choice of p should be decided by some model selection criteria.

4.2. Self-Exited Threshold Transformation (Model 2)

Regime switching models have been used extensively in economic modelling. In most studies,
two regimes designated as high (H) and low (L) states of an economy are introduced with a
state process making one of the regimes take place in each period. A most prominent member
of regime switching models is the threshold model, initially proposed by Tong (1978) and
Tong and Lim (1980), and discussed extensively in Tong (1990), which assumes that the
regime that occurs at time t can be determined by an observable variable relative to some
threshold value. In univariate time series modelling, a special case arises when the threshold
variable is taken to be a lagged value of the time series itself, i.e. Yt�d� for a certain integer
d > 0. Since in this case the regime is determined by the time series itself, the resulting
model is called a Self-Excited Threshold (SET) model.
In the context of RDs with conditional transformations, we assume that the value of �t

changes depending on whether Yt�� (d = 1) is above an unknown threshold value �SET or
not. Thus, the dynamics of �t can be written as

�t =

�
�L if Yt�� � �SET
�H if Yt�� > �SET

(17)

An alternative way to write the SET model in (17) is

�t = �L (1� I [Yt�� > �SET ]) + �HI [Yt�� > �SET ]
where I[A] is an indicator function with I[A] = 1 if the event A occurs and I[A] = 0
otherwise. See Tong (1990) for more detailed analyses of this speci�cation.
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4.3. Smooth Transition Transformation (Model 3)

The SET model assumes that the border between the two regimes is given by a speci�c
value of the threshold variable Yt��. A more gradual transition between di¤erent regimes
can be obtained by replacing the indicator function by a continuous transition function which
changes smoothly from 0 to 1 as Yt�� increases. Unsurprisingly, a popular choice for the
transition function is the logistic function with

�(Yt��;�; �LST ) =
1

1 + exp [�� (Yt�� � �LST )]
(18)

and the dynamics of �t is written as

�t = �L (1� �(Yt��;�; �LST )) + �H�(Yt��;�; �LST ) (19)

The resulting model is called a Logistic Smooth Transition (LST) model.
The parameter �LST in (18) can be interpreted as the threshold between the two regimes

corresponding to �(�1;�; �LST ) = 0 and �(+1;�; �LST ) = 1, in the sense that the logistic
function changes monotonically from 0 to 1 as Yt�� increases, while �(�LST ;�; �LST ) =
0:5. The parameter � determines the smoothness of the change in the value of the logistic
function, and thus the transition from one regime to the other. It is easily veri�ed that as �
becomes very large, the change of �(Yt��;�; �LST ) from 0 to 1 becomes almost instantaneous
at Yt�� = �LST and, consequently, the logistic function �(Yt��;�; �LST ) approaches the
indicator function I [Yt�� > �LST ]. Hence the SET model in (17) can be approximated by
the LST model in (19). When � ! 0, the logistic function becomes equal to a constant
(equal to 0:5) and when � = 0, the LST model reduces to the time-invariant baseline model.
See Teräsvirta (1994) and others for more details of this speci�cation.

4.4. Exogenous Regime Switching Transformation (Model 4)

The time-varying speci�cations of �t discussed above are all deterministic with respect t.
However, there is a large literature supporting the existence of stochastic regime changes in
the evolution of �nancial and economic variables. Examples include Hamilton (1988), Cai
(1994), Gray (1996), Garcia and Perron (1996), and recently Chang et al. (2013) and so on.
A most recent study of regime switching di¤usions was by Choi (2009).
Typically, in the context of di¤usions, a continuous-time two state Markov chain with

the conservative in�nitesimal matrix

Q =

�
qLL qHL
qLH qHH

�
=

�
�qLH qHL
qLH �qHL

�
is assumed to govern the switching between two regimes. The intensity parameter qij is the
rate of the probability at which the process switches from the state i to the state j as time
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goes to zero and qij > 0 for i 6= j. The corresponding transition matrix is then

P� =
1

qLH + qHL

�
qHL + qLHe

��(qLH+qHL) qHL
�
1� e��(qLH+qHL)

�
qLH

�
1� e��(qLH+qHL)

�
qLH + qHLe

��(qLH+qHL)

�
where � is the time interval between two neighboring observations. Hence, the tran-
sition probabilities depend not only on the intensity but also on �. Moreover, �L =
qHL= (qLH + qHL) and �H = qLH= (qLH + qHL) are the unconditional probabilities that the
above Markov chain will be in state L and H, respectively at any time.
If � is small enough, we can assume approximately that at most one regime shift can

occur in the duration of �. Thus, the regime index st is assumed to follow a discrete-time
Markov chain with two states. As such, we can reparameterize P� as

P =

�
pLL pHL
pLH pHH

�
(20)

and the transition probabilities, pij = P (st = jjst�� = i), i; j = L;H are of greater in-
terest than the intensity parameters in understanding the dynamics of stochastic processes.
Representing stationary distribution of the Markov chain in terms of pLL and pHH , we have

�L =
1� pHH

2� pLL + pHH
and �H =

1� pLL
2� pLL + pHH

which is, not surprisingly, the same as the unconditional probabilities of a discrete-time
Markov chain with transition matrix (20). Consequently, the transition probabilities pLL
and pHH and the parameters of regime-dependent RDs can be estimated in exactly the
same way as discrete-time Markov switching models using a Hamilton (1989) type �ltering
algorithm4. Meanwhile, in practice we specify the transition probabilities as pLL = � (cL)
and pHH = � (cH) to ensure that pLL; pHH 2 (0; 1).

4.5. Endogenous Regime Switching Transformation (Model 5)

The above standard regime switching model assumes that the transition of the underlying
�nite state Markov chain is independent of the evolutionary path of the observed state
variable Yt. However, studies including Diebold et al. (1994), Kim et al. (2008), Choi (2009),
Chang et al. (2013) among others all reported evidence of endogeneity in regime changes
that we observe widely and frequently for many practical applications. A convenient way
to allow endogenous regime changes in regime switching models is to model the transition
probabilities as functions of the lagged values of the state variable Yt itself. In order to
maintain the Markovian property of the resulting model and allow for su¢ cient nonlinearity

4The Hamilton (1989) algorithm is fairly standard. For space economy, we do not elaborate speci�c
details.
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in the dependence, we adopt a similar speci�cation as in Model 1 for the two endogenous
transition probabilities as

pLL (Yt��) = P (st = Ljst�� = L; Yt��) = �
 
cL +

pX
i=1

dL;iY
i
t��

!
(21)

pHH (Yt��) = P (st = Hjst�� = H; Yt��) = �
 
cH +

pX
i=1

dH;iY
i
t��

!
(22)

where � is the logistic function5. Clearly, if all coe¢ cients of the powers of Yt�� are jointly
zero, the transition probabilities become constant and the time-varying transition matrix is
reduced to the time-invariant transition matrix (20).
It is worth mentioning that our speci�cations of the endogenous transition probabilities

in (21) and (22) are related to the recent approach by Chang et al. (2013). They assume
that the switching between regimes is determined by whether a latent process is above or
below some unknown threshold value. Crucially, they assume that the innovation term of the
latent process and the observed state variable are correlated. As a consequence, the transition
probabilities of their regime switching model become endogenous, that is, dependent on the
lag(s) of the state variable. Clearly, our speci�cations in (21) and (22) produce similar e¤ects
and are therefore consistent with the logic behind their methodology. However, in contrast
to their implicit approach based on a latent process and an unknown threshold, we choose to
directly and explicitly specify pLL and pHH as �exible functions of Yt�� to introduce similar
endogeneity. Nevertheless, our approach clearly cannot give any intuitive description of the
cause of endogeneity as their model does.
For both Model 4 and 5, we de�ne �L as the low-value transformation parameter (cor-

responding to the low state) and �H as the higher value transformation parameter (corre-
sponding to the high state). It is important to emphasize that this de�nition of �L and �H
is di¤erent from the one in Model 2 and 3 where, according to (17) and (18), �L is de�ned
as the transformation parameter corresponding to Yt�� below or equal to the threshold and
�H is de�ned corresponding to Yt�� above the threshold.

5. Application to UK and US Short-Term Interest Rates

Short-term interest rates are often modeled as continuous-time di¤usion processes. Perhaps
more di¤usion speci�cations have been proposed for modelling short-rates than any other
�nancial variables. However, most earlier models are based on time-homogeneous paramet-
ric single-factor di¤usions, which prove to be insu¢ cient for describing complex short-rate

5The choice of link functions here is not unique. Other options include the standard normal CDF function
and others. However, results are usually quite simiar which is true in our applications too.
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dynamics. In this section, we examine the empirical performance of RDs with time-varying
transformations proposed in this paper.

5.1. The Data

We measure the UK and the US short rates by the 1-Month London Interbank O¤ered Rate
(LIBOR) in British Sterling and the 1-Month Eurodollar Rate (EDR) respectively, both at
the weekly frequency. The LIBORs are obtained from BBA (British Banking Association)
database and the EDRs are collected from the H.15 release of the Federal Reserve website6.
Table 1 provides some summary statistics of the data. The LIBOR data are available from

January 1986 to December 2007 with 1148 weekly observations. The EDR data start from
January 1971 to December 2007 yielding 1930 weekly observations. The sample means of the
two series suggest that the LIBOR is on average higher than the EDR, whereas the standard
deviations indicate that the EDR is more volatile than the LIBOR. The departure from
normality is con�rmed by the signi�cance of Jarque-Bera normality tests on the marginal
distributions. This suggests that any models, continuous or discrete, that imply Gaussian
marginal distributions will not be entirely appropriate. While both rates show positive
skewness, we note that the LIBOR is platykurtic whereas the EDR is leptokurtic.
The time series plots of the two series and their �rst di¤erences are provided in Figure 1.

Neither of the two series show discernible trend over its sample period. For the EDR, due to
the shift in monetary policy, the 1980 to 1982 years are characterized by substantially higher
levels than the rest of the sample period. Associated with high levels of interest rates are
high levels of volatility. In fact, this observation has been a main reason that motivates the
CEV di¤usion speci�cation by many authors (cf. Chan et al. 1992, Conley et al. 1997). The
LIBOR is highest around year 1990 as a result of the monetary policy followed at the time.
Both rates reached their lowest levels during the years 2004 and 2005. Generally speaking,
some graphical evidence exists which suggests that short-rates behave quite di¤erently in
di¤erent time periods. It is particularly clear from the lower panel of Figure 1 that the
volatilities are time-dependent. We conjecture that time-variations with possibly regime
changes are likely to be an important feature of our data.

5.2. ML Estimation

One of the most prominent advantages of RDs is their closed-form transition PDFs. Thus,
ML is chosen to be our preferred estimation method for its e¢ ciency gain and classic in-
ferential procedure. The ML estimation for Model 0 and Model 1 are straightforward. For

6We use the same dataset used by Bu et al. (2011) so that their estimation results can serve as a
benchmark.
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Model 2, we search for the optimal threshold value �SET across the full range of the sample7.
Speci�cally, we take each distinct observation in the sample one at a time as a candidate
threshold and use the ML procedure to obtain the corresponding log-likelihood (LL) of the
model. We repeat this procedure using every distinct observation as the threshold. The
estimation results corresponding to the highest LL are then reported8. For Model 3, the
parameter space is assumed to be continuous. However, in order to �nd the global maxi-
mum, we adopt the following procedure to search for the optimal �LST . We �rst use a similar
search procedure as in Model 2 to locate the candidate threshold which yields the highest LL
for the restricted version of Model 3 (i.e. Model 3 with known threshold). We then use this
candidate threshold and the estimates of other parameters as starting values to estimate the
unrestricted version of Model 3. The results obtained in this way are then reported. Model
4 and 5 are hidden Markov regime switching models. Therefore, their transition PDFs, i.e.
fY (ytjyt��), are not immediately available since it depends on the unobservable state. In
this paper, we use the standard �ltering algorithm of Hamilton (1989) to obtain fY (ytjyt��)
and implement ML estimation.
It is important to stress that since the focus of this paper is on time-varying transfor-

mations we assume that the underlying BD (i.e. the CIR process) is time-homogeneous.
Of course, one can in theory allow additional parameters to be time-dependent to achieve
even better �exibility, but a price must be paid for additional di¢ culty in numerical stability
and interpretation of the model. On the other hand, depending on whether �t 2 (1;1) or
�t 2 (0; 1), fairly general scenarios may be considered in the context of the models discussed
in Section 4. However, for model simplicity and space economy, we assume �t 2 (1;1) for
all t in subsequent analysis. This simplifying assumption is consistent with the empirical
�ndings of Bu et al. (2011).

5.3. Results

Estimation results for the two short-rate series (both measured as percentages, i.e. multiplied
by 100) are reported in Table 2 and 3, respectively. A total of six models (including Model
0 which is our baseline model) were estimated. For each model, we report ML estimates
of model parameters and their standard errors (whenever applicable) obtained by inverting
the numerical Hessian. We also report the maximized LL and the corresponding AIC and
BIC values. In order to test the signi�cance of time-variation in the transformation, the
Likelihood Ratio (LR) statistics and the corresponding p-value for each time-varying speci-
�cation against the baseline model are also reported in the tables. However, it is important
to stress that not all of these p-values are strictly valid since under the null of Model 0 the

7Usually it would be su¢ cient to search the middle 70% of the data as threshold at either end 15% is not
too appealing from either economic or econometric point of views.

8This procedure can be regarded as a special grid search procedure in the sense that the grid points we
use simply consist of all distinct observations in the sample.
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parameters of some time-varying speci�cations are unidenti�ed. Nevertheless, in such cases
the p-values are only used as crude indications of comparative model performances. More
details are explained in the sequel.
Results from the baseline Model 0 are identical to those of Bu et al. (2011). The constant

transformation parameter � is signi�cantly di¤erent from either 0:5 or 1:5. Thus, the nested
CIR and AG models are strongly rejected.
Model 1 has the ACD type time-varying speci�cation. The polynomial type dependence

on the �rst lag Yt�� inside the link function captures potential nonlinearity. We report the
results for p = 3 for both data series. For the LIBOR, according to the t-ratios we �nd that
only the coe¢ cients of Y 2t�� and Y

3
t�� are signi�cant. For the EDR, the coe¢ cients of Yt��,

Y 2t�� and Y
3
t�� are signi�cant. This provides clear evidence of signi�cant time-variation in

the transformation parameter. However, including higher powers of Yt�� did not signi�canly
improve the goodness-of-�t. In fact, Y 4t�� turned out to be insigni�cant for both data series.
The LL, AIC and BIC all improved signi�cantly from the baseline model. Since Model 1
nests Model 0, we calculated the LR statistic to jointly test the signi�cance of this particular
time-varying speci�cation. The resulting LR statistics are 95:46 for LIBOR and 37:64 for
EDR, respectively. Compared to the �2 distribution with 4 degrees of freedom, the p-values
are zero up to at least 4 decimal points, suggesting strong rejection of the baseline model.
To graphically demonstrate the time-varying e¤ects, we plot the �tted values of �t against
the constant � estimated from Model 0 as well as its 95% con�dence bands in Figure 2.
The signi�cant proportion of �t outside the con�dence bands are strong evidence of the
time-variation of �t.
Model 2-5 all assume that �t can take potentially two distinct values corresponding to

the two states of the world. Such an assumption is economically intuitive since economies
are often viewed to have high or low status. Model 2 is a simple SET model of order 1. As
discussed above, we searched the whole sample space for the value of the threshold �SET to
locate the maximum LL. The optimal �SET is found to be 12:625 for the LIBOR and 11:610
for the EDR. For the LIBOR, the transformation parameter is higher (�L = 1:649) when
Yt�� is below the threshold and lower (�H = 1:394) when Yt�� is above the threshold. In
contrast, the opposite situation is observed for the EDR with �L = 1:123 and �H = 1:268.
The LL, AIC and BIC all suggest signi�cant improvements upon the baseline model for
both rates. However, the LR test cannot be used here since under the null of no threshold
e¤ect, �SET and the two transformation parameters �H and �L are unidenti�ed and the
resulting LR statistic will not have the usual �2 distribution. Nevertheless, if we crudely
resort to the conventional LR test, Model 0 would be rejected in favor of Model 2 even
at 0:01% signi�cance level, indicating some though not strictly formal evidence in favor of
the threshold type regime switching e¤ects for both LIBOR and EDR. Coincidentally, the
goodness-of-�t of Model 1 and 2 in terms of LL, AIC and BIC are surprisingly close, despite
the fact that the time-varying mechanisms of the two models are quite di¤erent.
Model 3 is the threshold model with smooth transition between �H and �L. Related
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literature suggests that ST models are often di¢ cult to estimate. In particular, the accuracy
in estimating � is usually poor. Unfortunately, this is true in our application too. As
expected, the estimates of � are extremely large but insigni�cant for both series. In the
mean time, other parameter estimates are fairly close to those of Model 2, the SET model.
As discussed in Section 4, the ST model can approximate the SET model with very large
values of �. For this reason, the estimation results of Model 3 have signi�cant implications.
Clearly, they are indicative that for both rates the transition between �H and �L is unlikely
to be smooth. More speci�cally, the two series are both in favor of the type of transition as
speci�ed in Model 2. The fairly similar goodness-of-�t measures of Model 2 and 3 in terms
of LL, AIC, and BIC are further con�rmation of this observation. A similar informal LR
statistic comparing Model 3 and 0 and its p-value were also calculated. As expected, they
are practically the same as those of Model 2. Thus, unsurprisingly Model 3 also o¤ers strong
evidence against the baseline model.
Model 4 and 5 di¤er fromModel 0-3 in that they represent stochastic transformations and

thus they are e¤ectively two factor random processes. In Model 4, the transition probabilities
between high and low regimes (pHH and pLL) are constant. In other words, the switching
between regimes is exogenous. However, it is worth stressing that the regime switching
itself still determines that �t is time-varying. Estimation results from the two rates suggest
that the introduction of random regime switching (stochastic time-variation) substantially
improved the goodness-of-�t to the data in a way that is substantially better than any of the
deterministic type time-varying transformation models. For both series, the LL, AIC and
BIC measures almost all doubled compared to Model 0 and signi�cantly better than Model
1, 2 and 3. Similar to Model 2 and 3, it is also impossible to use the usual LR statistics
to test our regime switching model against the time-homogeneous case. A similar reason is
that the parameters related to the second state of the process are not identi�ed under the
null of no regime-switching. There are some researchers who addressed this problem, but
generally testing for multiple regimes is not an easy task (cf. Davis 1987 and Hansen 1992,
1996). However, a similar informal test (as we did for Model 2 and 3) based on the usual
LR statistic and �2 distribution suggests an even stronger rejection of Model 0 in favor of
Model 4 at less than 0:01% signi�cance level. In any event, the substantially improved AIC
and BIC are more convincing indications.
For the LIBOR, the estimated transition probabilities pLL = 0:877 and pHH = 0:835

suggest that the average number of periods that �t stays in the low value is approximately
8 weeks and 6 weeks in high value. This is slightly in contrast to the EDR with pLL = 0:967
and pHH = 0:933 and averages of 30 and 15 weeks respectively. Hamilton (1989)�s algorithm
also allows us to infer the probability of the state at each time period conditional on the full
sample. Such inferred probabilities are also known as the smoothed probabilities. In order
to have an indication about the likelihood of �t in either states at each time step, we plot in
Figure 3 the time series of smoothed probabilities against the time series of Yt itself and its
�rst di¤erence. As far as the EDR is concerned, we �nd that our inferred states coincided
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to a reasonable degree with economic events happened in the sample period depicted in
Choi (2009)9. This suggests that our regime switching time-varying transformation model
can indeed reasonably pick up important features of the data. Moreover, compared to the
di¤erenced series, distinct volatility levels appear to be characteristic features of di¤erent
states. Similar features are also observed for the LIBOR.
Although the exogenous regime switching Model 4 performs distinctively well compared

to all preceding cases, the assumption of exogenous regime switching contradicts the evidence
of endogeneity in regime changes that we observe widely and frequently for many practical
applications (cf. Chang et al. 2013)10. Model 5 examines the possibility of such endogeneity
by specifying pHH and pLL as nonlinear functions of Yt��. For the same argument as for
Model 1, we include powers of Yt�� up to 3rd order and use the same algorithm to obtain
ML estimation results. For both rates, the goodness-of-�t of Model 5 improved upon Model
4 in terms of LL and AIC, but not BIC. This is not surprising because BIC imposes a heavier
penalty on increased number of parameters than AIC and Model 5 has 8 additional parame-
ters relative to Model 4. Both LR statistics calculated against Model 0 are unsurprisingly
higher. As far as individual coe¢ cients are concerned, no clear signi�cance was found by
examining the t-ratios alone. However, since the regressors are highly correlated, looking at
t-ratios individually may not be totally appropriate. Hence, we perform LR tests to examine
all coe¢ cients jointly and test against Model 4. Note that this is actually a valid LR test
since Model 4 is nested in Model 5. The resulting LR statistics are 36:97 for LIBOR and
21:06 for EDR respectively, which are both highly signi�cant at 1% signi�cance level. Hence,
despite the seemingly insigni�cant coe¢ cients, our LR tests turn out to be very signi�cant
for both LIBOR and EDR. This can be regarded as evidence of nonlinear endogeneity in
the regime switching probabilities. To demonstrate this endogeneity graphically, we plot in
Figure 4 the �ltered endogenous transition probabilities pHH (Yt��) and pLL (Yt��) versus
the �ltered constant transition probabilities pHH and pLL of Model 4 and the corresponding
95% con�dence bands. The presence of time-variation in these �ltered transition probabili-
ties is quite obvious. Above all, Model 4 and 5 both o¤ered very strong evidence of regime
switching type time-variation in �t against other types of speci�cations. Moreover, evidence
coming out of Model 5 also suggests that such regime switches are likely to be endogenously
driven. This result is consistent with recent �ndings made by Chang et al. (2013) in their
application to US GDP growth rates and NYSE/AMEX index returns.

9Choi (2009) gave a more detailed account of such economic events. For space economy, we do not repeat
here.
10Chang et al. (2013) provides a more speci�c and economically justi�able alternative framework for

endogenous regime switching dynamics.
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6. Conclusion

In this paper, we proposed the general idea of using RDs with nonlinear time-varying trans-
formations for modelling �nancial and economic variables. Just as most pure time series
models, the economic intuition behind our model is not immediately evident. However, to
a limited extent one may regard the BD as a fundamental economic factor which drives
the evolution of observable variables and the transformation can be viewed as a nonlinear
measure of this factor. Moreover, the measure itself may be in�uenced by changing economic
environment and therefore the transformation itself can also evolve over time. We took a
feasible and practical approach in the design of our RDs, so that they are potentially very
�exible but analytically very tractable. Both are appealing properties to empirical users.
Using the CIR-CEV process as our baseline model, we proposed �ve distinct econometric
speci�cations to accommodate a variety of economically justi�able nonlinear time-varying
dynamics for the transformation function. These speci�cations represent both deterministic
and stochastic time dependences. Without violating the Markovian property of di¤usion
models, we only allowed the dependence of time-variation on the �rst lag of the observed se-
ries. Whenever is feasible and convenient, such a lag-dependence is speci�ed in a �exible form
which is to some extent analogous to a nonparametric design. Such a consideration further
enhances the �exibility and captures potential nonlinearity. The application of our speci�ca-
tions to UK and US short-term interest rate data revealed strong evidence of time-variations
in the transformation of our RD. Consistent with recent �ndings by Chang et al. (2013), the
endogenous regime switching model appears to be our best performing speci�cation. Above
all, our study suggests that in the context of RDs, time-dependent transformations are either
a phenomenon or a statistical tool that may be extremely important for empirical studies.
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Table 1: Descriptive statistics of weekly LIBOR and EDR
LIBOR EDR

Sample period 1986.01-2007.12 1971.01-2007.12
Sample size 1148 1930
Mean 7.413 6.781
Std. Dev. 3.214 3.550
Skewness 1.003 1.099
Kurtosis 2.872 4.809
Jarque-Bera statistic 193.280 651.979
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Table 2: Maximum likelihood estimation results for LIBOR
LIBOR

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5
�1 -0.096 �1 -0.002 �1 -0.002 �1 -0.002 �1 -0.003 �1 -0.003

(0.080) (0.006) (0.003) (0.005) (0.001) (0.006)
�2 0.075 �2 0.013 �2 0.003 �2 0.003 �2 0.002 �2 0.001

(0.067) (0.006) (0.003) (0.002) (0.004) (0.002)
�2 0.005 �2 0.005 �2 0.002 �2 0.002 �2 0.001 �2 0.001

(0.009) (0.001) (0.001) (0.001) (0.001) (0.001)
� 1.330 ! 1.514 �L 1.648 �L 1.649 �L 1.146 �L 1.184

(0.060) (0.528) (0.070) (0.067) (0.193) (0.190)
�1 0.063 �H 1.301 �H 1.301 �H 1.299 �H 2.080

(0.044) (0.056) (0.054) (0.053) (0.225)
�2 -0.043 �SET 12.625 �LST 12.684 pLL 0.877 cL 5.493

(0.004) (� �) (1.460) (0.028) (11.250)
�3 0.003 � 1.189�104 pHH 0.835 cH 30.610

(0.001) (1.970�106) (0.019) (14.311)
dL1 -0.726

(5.406)
dL2 0.055

(0.945)
dL3 -0.007

(0.071)
dH1 -12.868

(7.056)
dH2 2.111

(1.219)
dH3 -0.152

(0.088)
lnL 624.19 671.92 671.20 671.31 1000.80 1019.30
AIC -1240.39 -1327.84 -1332.40 -1328.62 -1987.59 -2008.56
BIC -1220.21 -1287.47 -1307.17 -1293.30 -1952.27 -1932.87
LR 95.46 94.02 94.24 753.22 790.22

p-value 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 3: Maximum likelihood estimation results for EDR
EDR

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5
�1 -0.079 �1 -0.011 �1 -0.014 �1 -0.011 �1 -0.013 �1 -0.013

(0.064) (0.020) (0.015) (0.009) (0.005) (0.003)
�2 0.206 �2 0.1273 �2 0.109 �2 0.108 �2 0.047 �2 0.044

(0.170) (0.072) (0.107) (0.086) (0.019) (0.020)
�2 0.027 �2 0.035 �2 0.034 �2 0.034 �2 0.012 �2 0.012

(0.002) (0.003) (0.004) (0.004) (0.001) (0.002)
� 1.219 ! 1.199 �L 1.123 �L 1.123 �L 1.074 �L 1.078

(0.026) (0.705) (0.030) (0.030) (0.028) (0.038)
�1 0.519 �H 1.268 �H 1.268 �H 1.659 �H 1.688

(0.126) (0.029) (0.029) (0.053) (0.066)
�2 -0.074 �SET 11.610 �LST 11.619 pLL 0.967 cL 1.095

(0.020) (� �) (0.121) (0.007) (2.232)
�3 0.003 � 999.997 pHH 0.933 cH 2.572

(0.002) (5.909�103) (0.018) (2.047)
dL1 1.023

(1.342)
dL2 -0.093

(0.258)
dL3 -0.001

(0.019)
dH1 0.413

(1.088)
dH2 -0.097

(0.195)
dH3 0.005

(0.014)
lnL 425.09 443.91 445.07 445.07 862.88 873.41
AIC -842.18 -871.82 -880.14 -876.14 -1711.76 -1716.82
BIC -819.92 -827.30 -852.31 -837.18 -1672.80 -1633.34
LR 37.64 39.96 39.96 875.58 896.64

p-value 0.0000 0.0000 0.0000 0.0000 0.0000
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Figure 1: Original and di¤erenced series of weekly LIBOR and EDR
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Figure 2: Estimated time-varying transformation parameter from Model 1
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Figure 3: Smoothed probabilities from Model 4
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Figure 4: Estimated endogenous time-varying transition probabilities from Model 5
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